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Abstract

The effect of coherency loss on the development of precipitate size distribution under cascade-producing irradiation is
considered. The nucleation of coherent precipitates, their growth followed by coherency loss and cascade-induced disso-
lution of large incoherent precipitates can occur simultaneously resulting in formation of a quasi-stationary size distribu-
tion of semicoherent precipitates. To describe this process we consider co-evolution of a mixed population of coherent,
semicoherent and incoherent precipitates. Mathematically, the problem is formulated as a set of discrete rate equations
of nucleation kinetics (the Master equation approach) which is also used for later stages of evolution. To solve the corre-
sponding large set of equations (typically, more than 105 equations) an efficient numerical method is developed. The
simulation results obtained for material parameters and irradiation conditions typical for nuclear reactors show that
the coherency loss affects considerably evolution of the precipitate population. Under certain irradiation conditions, both
in solution-annealed alloys and in aged ones, the mean precipitate size and the number density during prolonged irradi-
ation tend to steady state values, whereas the size distribution function of large precipitates narrows. The width of the
quasi-stationary size distribution is controlled by cascade parameters. It was found that the asymptotic quasi-stationary
state of the precipitate population may depend on initial state of the alloy.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Modern multicomponent alloys applied in
nuclear industry contain precipitates of non-equilib-
rium phases and/or phases supersaturated with one
of the components. During in-reactor service the
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alloy composition and phase microstructure evolve,
resulting in change of mechanical properties and
dimensional instability. Several examples presented
below show that second phase precipitation plays
a very important role in behavior of materials under
irradiation.

It is frequently found that materials exhibit
enhanced radiation resistance if second phase pre-
cipitates are coherent with the matrix, e. g. the swell-
ing resistance of PE16 stainless steel [1] and other
nickel-rich alloys [2,3] is attributed usually to the
.
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population of fine-grained precipitates of c 0-phase
homogeneously distributed in the matrix.

Another example is the formation of a high num-
ber density of ultra-fine, nanometer-sized copper-
rich precipitates in ferritic steels which is a major
cause of steel hardening and embrittlement of reac-
tor pressure vessels [4,5]. Much research attention
has concentrated on the precipitation of copper in
binary Fe–Cu model alloys under thermal ageing
conditions. These studies have established that the
copper-rich precipitates first form with a coherent
bcc structure, while large overaged precipitates
are fcc. The precipitate structures follow a compli-
cated sequence of transformations from coherent
into incoherent state, bcc! 9R! 3R! fcc, with
increasing aging time [6,7]. The size at which the
first transformation bcc! 9R takes place depends
on the ambient temperature and is about 12 nm at
550 �C and 5 nm at room temperature [7]. A simi-
lar precipitation sequence has been observed in a
Fe–1.5 wt%Cu alloy irradiated at 295 �C with
2.5 MeV electrons to a dose of 3.1 · 1023 m�2. The
maximum size of 9R precipitates found here was
about 8 nm, larger precipitates (up to about
20 nm) appeared to have transformed wholly or
partially to 3R or fcc [8]. This suggests that the main
effect of electron irradiation was to enhance the
diffusion of copper and, hence, to accelerate the pre-
cipitation kinetics. Under neutron and ion irradia-
tion the precipitate evolution differs. The presence
of small 9R precipitates was confirmed in a Fe–
1.3 wt%Cu model alloy irradiated with neutrons to
doses of 8.61 · 10�3 dpa and 6.3 · 10�2 dpa at a
temperature of about 270 �C [9]. However, studies
reported in [9], the earlier small-angle neutron scat-
tering (SANS) and transmission electron micros-
copy data [10], as well as the recent atom probe
tomography and SANS studies [11] have found that
in both steels and model alloys, precipitate sizes are
smaller (about 2–4 nm) and number densities are
higher after neutron irradiation than for equivalent
thermally-aged materials. The size decrease of Cu
precipitates in an aged Fe–1.3 wt%Cu alloy was
observed in the temperature range between room
temperature and 550 �C after 300 keV Fe+ ion irra-
diation at displacement rates of 10�3–10�2 dpa/s to
fluences of up to 30 dpa [12]. Copper precipitates
were found to keep their shape but decrease in size
under all irradiation conditions. According to
[9,12], the lack of coarsening seen in precipitates
under neutron and heavy-ion irradiation may be
due to cascade-induced precipitate dissolution.
It is known that Zr–Nb alloys are usually fabri-
cated with a dual a-Zr + b-Zr phase structure. Both
phases are metastable under operating temperatures
of thermal reactors (about 520–570 K). The hcp
a-phase is supersaturated with Nb. Precipitation
of b-Nb in the a-phase correlates with the improved
corrosion resistance of the Zr–2.5Nb pressure tubes
due to irradiation (see, for example [13] and papers
cited there). The radiation-enhanced b-Nb precipi-
tation in the form of needles, platelets or sword-
shaped precipitates has been observed under
electron [14] proton [15] and neutron [13,16–20]
irradiation. In irradiated samples the average size of
b-Nb precipitates is generally small, 5–40 nm in
length. The density of precipitates is high and gener-
ally they are distributed uniformly within the a-Zr
phase. We have not found in the literature any
observations of large incoherent globular Nb pre-
cipitates or precipitates at grain boundaries in the
a-Zr phase irradiated under reactor conditions, i.e.
at temperatures below 600 K. In our opinion, this
indicates that incoherent precipitates are unstable
under irradiation and therefore cannot form. At
the same time, stability of small platelet or needle-
like precipitates under irradiation can be under-
stood if we note that these precipitates are in a more
coherent state with the a-Zr matrix [24]. In reality,
b-Nb particles cannot be fully coherent with the
a-matrix because of different crystal lattices. How-
ever, a large fraction of the interface of a needle-,
platelet- or sword-shaped particle is coherent with
the matrix, while the lattice misfit is accommodated
at the incoherent fraction of the interface. This
means that on the average the small b-Nb precipi-
tates can be considered coherent (or semicoherent)
with the matrix. It seems that in alloys under certain
irradiation conditions coherent precipitates cannot

grow to large sizes because of coherency loss.

In our previous publications we have described
the combined effect of radiation-induced segrega-
tion and cascades mixing on the stability of coherent
and incoherent precipitates in disordered substitu-
tional alloys. The results of phase stability studies
have been presented in the form of radiation-modi-
fied phase diagram [21–24]. This diagram contains a
low temperature boundary for precipitate stability,
the location of which depends on displacement rate
and mixing efficiency of irradiation. We have found
that stability criteria for coherent and incoherent
precipitates differ. The low temperature bound-
ary for stability of incoherent precipitates is located
at higher temperatures than the corresponding
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Fig. 1. Radiation-modified phase diagram of a model alloy
calculated for cascade-producing irradiation without segregation
effects [24] (material parameters are listed in Table 1). The
equilibrium phase diagram of the Zr–Nb alloy is shown by dotted
lines as a reference to real materials. The initial state of the alloy
shown by the full circle corresponds to stable coherent precip-
itates and unstable incoherent precipitates. The equilibrium
concentration of mobile monomers and radiation-modified sol-
ubilities (coherent and incoherent) are labeled by Ce

A, Cirr
A coh and

Cirr
A inc, correspondingly.
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boundary for coherent precipitates, Tcoh < Tinc (see
Fig. 1). The existence of two thresholds for stability
of precipitates suggests that in alloys under irradia-
tion at temperatures Tcoh < T < Tinc a quasi-station-
ary distribution of semicoherent precipitates may
form [24]. The mechanism is connected with compe-
tition of (i) the nucleation and growth of coherent
precipitates in a supersaturated solid solution and
(ii) the cascade-induced dissolution of large precipi-
tates that lose coherency upon reaching, during
growth, some critical range of sizes. The supersatu-
ration in the alloy can be created and maintained
due to cascade-induced dissolution of incoherent
precipitates present in the alloy prior to irradiation.

The aim of this paper is to investigate the effect of
coherency loss on the development of precipitate
size distribution under cascade-producing irradia-
tion. In the next section we construct the precipitate
growth rate as a function of a degree of coherency.
Then, in order to describe the evolution of the
mixed population of coherent, semicoherent and
incoherent precipitates, we formulate the discrete
Master equation approach, i.e. the set of kinetic
equations for the entire population of solute clusters
of all sizes together with mobile monomers and
point defects (PD). The influence of coherency loss
on the sink strength, point defect concentrations
and growth rates of precipitates is taken into
account self-consistently. To solve the set of kinetic
equations we develop an efficient numerical method.
Finally, using parameters typical for reactor materi-
als, we demonstrate that under irradiation a quasi-
stationary distribution of precipitates can form both
in solution-annealed alloys and in aged ones.
2. The model

Consider a substitutional binary alloy A–B with
concentrations of components CA and CB

(CA + CB = 1, CB > CA, where CA is the solute in
the following). The concentrations are defined in
terms of atomic fractions. The alloy may contain
coherent and incoherent precipitates of an ordered
phase, which is assumed to consist of pure compo-
nent A. To keep the matter simple and to demon-
strate the effect of coherency loss we neglect
radiation-induced segregation and consider only
cascade-induced dissolution as a mechanism of
phase stability loss. All precipitates are approxi-
mated as spherical in shape. The rate of precipitate
growth can be represented as a sum of two contribu-
tions, namely, the diffusion growth and the cascade-
induced dissolution due to atomic mixing inside
cascade regions

dR
dt
¼ dR

dt

� �
dif

þ dR
dt

� �
mix

; ð1Þ

where R is the precipitate radius. Using results of
[22,24], one can show that in the absence of segrega-
tion effects the diffusion-controlled growth rate of
coherent and incoherent precipitates is given by

dR
dt

� �a

dif

¼ Da
A

R
ðCA � CR;a

A Þ a ¼ coh; inc; ð2Þ

where superscripts coh and inc refer to coherent and
incoherent precipitates, respectively; CA is the aver-
age concentration of mobile solute monomers in the
matrix. CR;a

A is the thermal equilibrium concentra-
tion of solute monomers at the precipitate boundary
given by the Gibbs–Thomson relation

CR;a
A ¼ Ce;a

A exp
2cax
RkBT

� �
; ð3Þ

where Ce;a
A is the solute monomer concentration at

equilibrium with the bulk phase A and ca is the
precipitate–matrix interphase energy. Ce;a

A and ca de-
pends on interface type. Generally, the interphase
energy of coherent precipitates is substantially less
than that of incoherent precipitates [25]. The
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coefficient of radiation-enhanced interdiffusion Da
A

depends on interface type [21]

Dcoh
A ¼ DVð2CV � Ce

VÞ; Dinc
A ¼

2DVðCV � Ce
VÞ

lnð2CV=Ce
V � 1Þ ;

ð4Þ
where DV is the vacancy diffusion coefficient, CV is
the average concentration of vacancies and Ce

V is
the thermal equilibrium concentration of vacancies.
Under irradiation the vacancy supersaturation
CV=Ce

V � 1, therefore, according to Eqs. (2) and
(4), the diffusion growth rate of incoherent precipi-
tates is less than the diffusion growth rate of coher-
ent ones. The physical reason is that the boundary
of the incoherent precipitate is a sink for PD and
thermal equilibrium concentrations of PD are main-
tained at it. Therefore, near the incoherent precipi-
tate concentrations of PD is less than near the
coherent precipitate, hence the solute diffusion is
retarded.

It is reasonable to assume that the rate of ather-
mal cascade dissolution is the same for coherent and
incoherent precipitates

dR
dt

� �
mix

¼ �Dmix

R
; ð5Þ

where Dmix is the diffusion coefficient due to cascade
mixing, which is proportional to the mixing effi-
ciency dmix and the generation rate of freely migrat-
ing PD K [23,24].

Dmix ¼ dmixK: ð6Þ
Now we will derive the growth rate of a semi-

coherent precipitate. To take into account the
coherency loss we introduce the size dependent
degree of coherency. The transformation from the
coherent state into the incoherent one is assumed
to occur gradually in a certain size interval. The
degree of coherency for a precipitate containing n

solute atoms we define by a step-like function

p¼
1; for n6 ncoh

1þ exp
n�nloss

Dn

� �h i�1

; for n> ncoh

8<
: n¼ 4p

3x
R3;

ð7Þ
where nloss is the size of the precipitate with p = 0.5,
Dn is the width of the transformation region and x
is the atomic volume. Small precipitates (solute clus-
ters) containing less than ncoh atoms are considered
to be coherent with the matrix (ncoh < nloss).

The growth rate of semicoherent precipitate is
constructed as an interpolation between the growth
rates of coherent and incoherent precipitates with
the degree of coherency as a weighting factor

dR
dt
¼ dR

dt

� �coh

dif

p þ dR
dt

� �inc

dif

ð1� pÞ þ dR
dt

� �
mix

: ð8Þ

Our goal is to consider the evolution of the precip-
itate size distribution function which is defined as
the time-dependent concentration f(n, t) of solute
clusters of a given size n varying over the range from
solute dimers to large incoherent precipitates. We
use the discrete Master equation approach, i.e. the
set of kinetic equations defined by the rates at which
precipitates absorb a solute atom and lose a solute
atom due to thermal evaporation and cascade
destruction

of ð2; tÞ
ot

¼ 2W þð1ÞCA � ðW þð2Þ þ W �ð2ÞÞf ð2; tÞ

þ W �ð3Þf ð3; tÞ; ð9Þ
of ðn; tÞ

ot
¼ J n�1;n � J n;nþ1; n P 3; ð10Þ

J n�1;n ¼ W þðn� 1Þf ðn� 1; tÞ � W �ðnÞf ðn; tÞ: ð11Þ

Using Eq. (8) we construct the absorption and emis-
sion rates of solute monomers. Probabilities to ab-
sorb/emit a solute atom by precipitates include the
coherent and incoherent contributions; the proba-
bility to emit a solute atom contains also the term
responsible for cascade dissolution

W þðnÞ ¼ W þ
cohðnÞpðnÞ þ W þ

incðnÞð1� pðnÞÞ; ð12Þ
W �ðnÞ ¼ W �

cohðnÞpðnÞ þ W �
incðnÞð1� pðnÞÞ

þ 4pRðnÞ
x

Dmix; ð13Þ

W þ
a ðnÞ and W �

a ðnÞ are the absorption and emission
rates for coherent and incoherent precipitates

W þ
a ðnÞ ¼

4p
x

RðnÞDa
ACA; ð14Þ

W �
a ðnÞ ¼

4p
x

RðnÞDa
ACR;a

A ; a ¼ coh; inc: ð15Þ

The first term in Eq. (9) for dimers takes into ac-
count that the relative diffusivity of the monomer
pair is twice as much as the monomer diffusivity.

Here we do not consider the populations of
coherent and incoherent precipitates separately.
Instead we introduce different probabilities to
absorb solute atoms by coherent and incoherent
precipitate. The advantage of this approach is that
we can include in the model the population of semi-
coherent precipitates (at least qualitatively). As
can be seen from Eqs. (12) and (13), p(n) has the
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meaning of the probability for a precipitate to be
coherent with the matrix.

We do not consider irradiation with A or B ions;
therefore the total number of mobile monomers and
solute atoms in all clusters is conserved in the
system

CA þ
X1
n¼2

nf ðn; tÞ ¼ Q; ð16Þ

where Q is the volume fraction of solute atoms.
Below we will use this mass-balance condition in a
differential form

dCA

dt
¼ �

X1
n¼2

n
of ðn; tÞ

ot
: ð17Þ

Solute mobility depends on vacancy concentra-
tion which is determined from the quasi-stationary
equation

K � aRDiCiCV � k2DVðCV � Ce
VÞ ¼ 0; ð18Þ

where Di is the diffusion coefficient of interstitial
atoms, Ci is the average concentration of interstitial
atoms, aR is the recombination rate constant and k2

is the total sink strength. For the problem addressed
here bias effects are not essential, therefore we use
the usual relation

DiCi ¼ DVðCV � Ce
VÞ: ð19Þ

Then the vacancy supersaturation is given by

CV

Ce
V

¼ 1þ 1

2
1þ k2

Ce
VaR

� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4K

aRDV

Ce
V þ

k2

aR

� ��2
s

� 1

8<
:

9=
;: ð20Þ

The total sink strength contains contributions from
semicoherent and incoherent precipitates which are
sinks for PD

k2 ¼ k2
0 þ

4p
x

X1
n¼ncoh

RðnÞf ðn; tÞð1� pðnÞÞ; ð21Þ

where k2
0 is the ‘background’ sink strength of all

other sinks except precipitates.

3. Numerical method

Because of non-linearity and complexity the set
of kinetic equations formulated above can be solved
only numerically. However, this problem is impossi-
ble to solve directly, even numerically, since the
number of coupled equations amounts to the num-
ber of solute atoms in the largest precipitates pres-
ent in the system, i.e. requirements to computer
resources increase enormously with the precipitate
size (for a system with precipitate sizes in the range
of R 6 10 nm the number of equations is more than
105). This difficulty is common in problems of the
non-equilibrium evolution of cluster populations.
Early efforts [26–35] in description of PD cluster
nucleation and growth in metals under irradiation
are reviewed in [36–39]. The general solution strat-
egy of the hierarchy of rate equations for all cluster
sizes is to reduce this discrete Master equation for-
mulation to a continuous description and/or to a
numerical scheme with a controlled number of
equations.

Kiritani [29] has developed a method for analysis
of the clustering process of supersaturated lattice
vacancies, in which the first N = 100 equations are
the rate equations describing only single cluster
sizes, while above this number clusters within a
range of sizes are grouped together with the same
rate constants (the width of a group was less than
or equal to five percent of the size of clusters in this
group). Since the crossover value N = 100 is suffi-
ciently large, it is likely that the grouping has little
or no effect on the nucleation stage. The Master
equation plus grouping approach has proved to be
a useful approximate scheme. Hayns [31] has
applied the Kiritani grouping scheme to study the
nucleation and growth of interstitial loops during
irradiation, and has shown that by making a suit-
able choice of group widths the discontinuities
found by Koiwa [40] in the size distribution function
can be minimized. Further development and
improvement of the grouping method is described
in [41,42].

The most well known traditional method to
address the numerical difficulties of the discrete
Master equation approach is a continuum approxi-
mation for the cluster sizes. The Master equation is
transformed, by the Taylor series expansion up to
the second-order terms, into the partial differential
equation (PDE) of the Fokker–Planck type for the
distribution with the continuous size variable. In
general, the truncation of the Taylor series at the
second derivative is invalid for small-sized clusters,
i.e. in the size range where rate constants and distri-
bution functions change fast. Therefore, a hybrid
method has been developed by Ghoniem and Shara-
fat [37]. In this method to conserve the details of
small-size clustering the separate rate equations
are used for vacancy and interstitial clusters up to
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N = 4; larger size defects are simulated by convert-
ing the set of rate equations into the Fokker–Planck
equation. To solve numerically the Fokker–Planck
equation for high irradiation doses (large cluster
sizes) Ghoniem and Sharafat [37] introduce a new
variable that is related to the cluster radius r by a
logarithmic transformation u = ln(2r/b) (where b is
the Burgers vector); then they divide the continuous
domain into equal sized elements and discretize the
transformed Fokker–Planck equation. Computa-
tional efficiency can be improved further using the
atom conservation principle to determine dynami-
cally the necessary number of equations solved
simultaneously [35].

The hybrid method similar to that described in [37]
has been applied recently by Ozkan and Ortoleva [43]
to model nucleation, Ostwald ripening and stepping
in the silica polymorph system. In this method the
cluster size domain is divided into two parts; for small
clusters (n < N � 100) discrete kinetic equations are
applied, while for large clusters a continuous kinetic
equation is written with respect to the ln(n) variable.
In this approach the boundary condition between the
discrete and continuous formulations are obtained
from the continuity conditions [43].

In the methodology of Kampmann and Wagner
[44,45] the kinetics of small-sized clusters is not con-
sidered; instead, the classical nucleation theory is
used to derive the nucleation rate as a function of
time and solute concentration. In order to simulate
the precipitation kinetics the continuous time evolu-
tion is divided up into a discrete number of small
time steps. At each step, new particles are allowed
to nucleate and existing particles grow (or shrink).
The radius of the newly formed particles is set to
be slightly larger than the critical radius to enable
these particles to grow. The size distribution of the
particles is updated accordingly and used to calcu-
late the volume fraction of particles and hence the
instantaneous mean solute concentration in the
matrix. The updated mean solute concentration is
then used in calculating the nucleation and growth
rates in the next time step. In this way, the overlap
of nucleation, growth and coarsening during precip-
itation can be modeled [46].

Recently Surh et al. [47] have proposed a new
combined method, based on the Master equation
for small sizes and on a continuum Langevin Monte
Carlo scheme to solve the Fokker–Planck equation
for large sizes. The Master equation is used for
small integer-sized voids up to N = 2000. During
computational time step the clusters, which grow
to this upper boundary, are removed. The loss is
compensated by creating a new Langevin particle
at position n = N with weight equal to the density
of clusters lost. A biased random-walk of Langevin
particles approximates the Fokker–Planck evolu-
tion. The clusters in a given Langevin particle are
constrained to stay together in size as they evolve,
and the Langevin particle weight remains constant
over time [47].

In our study, to reduce drastically the number of
equations we propose a new realization of the
hybrid (or combined) approach that is rather simple
and straightforward methodologically as compared
to methods discussed above. Similar to [37,43] we
keep the original finite difference set of equations
up to some number, N� 1, of atoms in clusters.
For larger sizes, the discrete Master equation is
transformed, by the Taylor series expansion up to
the second-order terms, into the continuous
Fokker–Planck equation

of ðx; tÞ
ot

¼ o

ox
�AðxÞf ðx; tÞ þ 1

2

o

ox
BðxÞf ðx; tÞ

� �
;

x > N ; ð22Þ

where A(x) is the drift rate proportional to the
growth rate (8)

AðxÞ ¼ W þðxÞ � W �ðxÞ ¼ A0ðxÞ �
4pRðxÞ

x
Dmix

ð23Þ
and B(x) describes diffusion in the size space

BðxÞ ¼ W þðxÞ þ W �ðxÞ ¼ B0ðxÞ þ
4pRðxÞ

x
Dmix;

ð24Þ
where A0(x) and B0(x) correspond to the case with-
out cascade effects (Dmix = 0).

The combined set of equations – the discrete
Master equation and the continuous Fokker–
Planck equation – is solved numerically using a
technique known as the method of lines (MOL)
[48,49]. In the method of lines, the space and time
discretizations of a PDE are decoupled and ana-
lyzed independently. First, the spatial derivatives
are replaced with algebraic approximations over a
spatial mesh, keeping the time derivatives continu-
ous. The resulting system of initial-value ordinary
differential equations (ODEs) is then integrated
numerically using a suitable ODE integrator.

As it will be seen below, in our problem some
kind of non-uniform mesh is highly desirable in
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order to reduce the number of ODEs and, at the
same time, to allow adequate resolution of the rap-
idly changing distribution function (i) in the region
of small cluster sizes, (ii) at a moving front and (iii)
in the vicinity of the stable size. An adaptive mesh
scheme, which automatically tracks the regions of
sharp spatial variation, is probably the most efficient
option to do this (see, for example [50]). However,
for present purposes we have instead chosen a much
simpler non-adaptive non-uniform mesh scheme,
where the mesh spacing varies smoothly in a preset
way across the computational domain. To create
the non-uniform mesh we use the following relations
for mesh points xi and mesh spacings Dxi

x1 ¼ 1;

xi ¼ xi�1 þ Dxi; 2 6 i 6 M ;

Dxi ¼
1; for 2 6 i 6 N ;

Dxi�1 expðeÞ; for N < i 6 M ;

� ð25Þ

where M is sufficiently large so that the boundary
condition f(xM) = 0 is fulfilled. The variation of
mesh spacing is controlled by the parameter e that
should be small, jej � 1. For positive e the spacing
between mesh points increases exponentially with
point number i, therefore the number of equations
can be reduced substantially due to coarse-graining
of the numerical mesh. The increasing mesh spacing
is especially useful, for example, in the Ostwald rip-
ening problem, when the cluster mean size and the
width of the size distribution increase with time.
For constant and positive e it is easy to find from
Eq. (25) the explicit relation between mesh point
xi and point number i

i ¼ N þ 1

e
ln 1þ expðeÞ � 1

expðeÞ ðxi � NÞ
� �

; x P N ;

e ¼ const > 0: ð26Þ

Asymptotically, at i� N and exi� 1, we obtain
from (26)

i ¼ 1

e
lnðexiÞ: ð27Þ

This relation is of the same nature as the logarithmic
transformation u � ln(x) used in [37,43].

Mesh definition (25) allows one to change the
spacing between mesh points in a more sophisti-
cated way. That is, introducing a non-monotonic
dependence of e on mesh point number i, we can
adjust the mesh to the expected behavior of the
solution in special size regions after a test run of
the algorithm (see the next section).
The PDE (22) is transformed to conservative
finite difference equations on the non-uniform mesh
(25). The right hand side of the PDE containing the
size variable is discretized using central finite differ-
encing. As a result we obtain the set of ODEs in t

approximating the PDE

dfi

dt
¼ 1

Dxiþ1 þ Dxi

�
�ðAiþ1fiþ1 � Ai�1fi�1Þ

þ Biþ1fiþ1 � Bifi

Dxiþ1

� Bifi � Bi�1fi�1

Dxi

� �	
: ð28Þ

Here and below the subscript i refers to function
values in mesh points, fi = f(xi, t), etc. The remark-
able property of Eq. (28) is that on the mesh with
equidistant points (Dxi = 1) it reduces to the initial
discrete Master equation (10). Therefore Eq. (28)
can be used in the whole domain of cluster sizes
n P 3, i.e. the transition from the discrete Master
equation (xi 6 N) to the finite difference PDE
(xi > N) is seamless. In other words, in our numeri-
cal approach to ensure matching between the rate
theory solution and the Fokker–Planck solution,
we need no special modifications to the first
continuum equation or the boundary condition be-
tween the discrete and continuous formulations, as
distinct from numerical methods of Refs. [37,43],
respectively.

The summation in Eqs. (17) and (21) is replaced
by the numerical integration using the trapezoidal
rule for unequally spaced abscissas

dCA

dt
¼ �

XM

i¼2

xi
dfi

dt
Dzi; ð29Þ

k2 ¼ k2
0 þ

4p
x

XM

i¼ncoh

Rið1� piÞfiDzi; ð30Þ

where Dzi = 0.5(Dxi + Dxi+1).
The initial value problem for the set of ODEs

(28) and (29) can be solved by a standard numerical
package for stiff ODE sets. Stiffness is the generic
feature of this type of evolution equations; it is
related to the fact that the population of small sol-
ute clusters and the vacancy concentration adjust
very fast to slow changes in the system parameters
which are controlled by large clusters and precipi-
tates. We use the RADAU code that has been devel-
oped for stiff and differential-algebraic problems
[51]. This code is based on the implicit Runge–Kutta
method of variable order with an adaptive time-step
control. The stability properties and the high order



Table 1
Material parameters used in calculations

Parameter Value

Temperature, K 600
Geeration rate of freely

migrating point
defects, K, dpa/s

10�7

Cascade mixing efficiency,
dmix, nm2

4

Atomic volume, x, m�3 2.4 · 10�29

Recombination rate constant,
aR, m�2

3 · 1020

Initial strength of sinks,
k2

0, m�2
5 · 1014

Equilibrium vacancy
concentration, Ce

V, at. fraction
0.54exp(�1.8 eV/kBT)

Diffusion coefficient of
vacancies, DV, m2/s

1.67 · 10�4exp
(�1.37 eV/kBT)

Equilibrium concentration of
monomers, Ce

A, at.%
0.5

Total solute content, Q, at.% 2.5
Interphase energy, c, J/m2 0.1
Coherency loss parameter

(see Eq. (7)), ncoh

75

Coherency loss parameter (see

Eq. (7)), Rloss ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3nlossx=4p3

p
, nm

7

Width of the coherency loss
region (see Eq. (7)), Dn

104
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Fig. 2. The growth rate (solid line) and the degree of coherency
(dashed line, Eq. (7)) versus precipitate radius. The growth rate of
incoherent precipitates is negative. The concentration of solute
monomers CA = 0.8 at.%. Rcr and Rst are critical and stable radii,
respectively.
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make this method suitable for large sets of stiff
ODEs.

Several remarks should be made about the choice
of the Master equation cutoff N. As will be seen
from the simulation results presented below the
quasi-stationary distribution of solute clusters
forms rapidly in the region of small sizes. This dis-
tribution, as a function of cluster size, decreases
steeply from the dimer concentration to values of
several orders of magnitude smaller. There exists a
gap in the solute cluster distribution, separating
the population of small clusters from the distribu-
tion of large precipitates. Following Frenkel
[52,53] we call the distribution of small-sized clus-
ters, which nucleate and decay continuously, the
heterophase fluctuations [24,54]. The size width of
the region of heterophase fluctuations depends on
material parameters and temperature. In particular,
it increases with decreasing the interphase energy
[54]; and this effect is especially pronounced in case
of coherent precipitates that possess low interphase
energy. This means that heterophase fluctuations
may contribute considerably to the overall balance
of solute atoms and influence the kinetics of large
precipitates. Obviously, to describe adequately the
nucleation stage and the kinetics of heterophase
fluctuations the Master equation cutoff N should
be chosen to lie outside the region of heterophase
fluctuations. Exactly in the region of heterophase
fluctuations the Taylor series expansion of the
distribution function is not valid; hence, we use
the discrete Master equation (see Eqs. (9)–(11)) or
equivalent Eq. (28) with Dxi = 1. Since the kinetics
of heterophase fluctuations is fast, the optimum
value of N (the number of equidistant mesh points,
Dxi = 1, i 6 N) can be estimated from a short simu-
lation of a low dose irradiation, using a large guess
value of N.

4. Simulation results

Material parameters used in simulations are
listed in Table 1. For simplicity, energies of coherent
interfaces and incoherent ones are assumed to be the
same. This set of parameters is basically the same as
that used in our paper for model calculations of the
radiation-modified phase diagram of Zr–Nb alloy
[24]. Irradiation conditions and the solute content
are so chosen that coherent precipitates are stable
whereas incoherent ones are unstable (see Fig. 1).
Therefore we expect that in this region the popula-
tion of semicoherent precipitates may form after
prolonged irradiation. To illustrate the point
Fig. 2 shows the precipitate growth rate, Eq. (8),
as a function of precipitate radius. It is seen that
small precipitates cannot grow to sizes larger than
the stable size, while large incoherent precipitates
should shrink to the stable size.
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4.1. Solution-annealed alloy

Let us consider homogeneous nucleation of pre-
cipitates and evolution of their size distribution in
a solution-annealed alloy under cascade-producing
irradiation. In the initial state the matrix contains
only solute monomers with the concentration
CA = Q = 2.5 at.%. The initial value problem for
the ODE set given by Eq. (28) has been solved in
the size region from dimers to precipitates contain-
ing 8.5 · 104 solute atoms (radius of about
7.8 nm). The mesh defined by Eq. (25) with increas-
ing mesh spacing (N = 50 and e = 5 · 10�3) was
used up to the cluster radius 0.7Rloss (Dx =
105.11). For cluster sizes R > 0.7Rloss, the decreas-
ing mesh spacing with e = �10�3 was used, because
in this size region the formation of a narrow distri-
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Fig. 3. The simulated distribution function of solute clusters
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100 dpa. Dose is defined as Kt.
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bution function was expected. The chosen mesh
allowed us to reduce the total number of ODE
solved simultaneously to 1923.

Fig. 3 shows the distribution function of solute
clusters defined in terms of cluster radius

F ðR; tÞ ¼ 3

x
4p
3x

� �1=3

n2=3f ðn; tÞ: ð31Þ

It is seen that the nucleation stage has been com-
pleted very fast and after a short transient period
the quasi-stationary distribution of small clusters
(R < 1 nm) has formed. The leading edge of the dis-
tribution advances with time, but it cannot move
into the region of incoherent precipitates where
the drift rate A(x) is negative. As a result the narrow
distribution of semicoherent precipitates forms at a
radius of about 6 nm.

To analyze the simulation results we divide the
population of precipitates into two groups: (i) small
clusters (heterophase fluctuations) which contain
less than n* = 75 atoms (R < R* = 0.75 nm); and
(ii) large precipitates. Fig. 4(a) shows the dose
dependence of the heterophase fluctuation density
Nhf and the precipitate density Np

N hf ¼
1

x

Xi�

i¼2

f ðxi; tÞDzi �
Z R�

R2

F ðR; tÞdR; ð32Þ

N p ¼
1

x

XM

i¼i�
f ðxi; tÞDzi �

Z 1

R�
F ðR; tÞdR; ð33Þ

where i* is the index number of the mesh point
xi� ¼ n� and R2 is the dimer radius.

After 0.1 dpa the density of heterophase fluctua-
tions remains almost constant up to 100 dpa, while
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the population of large precipitates undergoes a
process akin to the Ostwald ripening, i.e. the num-
ber density of precipitates decreases (Fig. 4(a)). At
about 40 dpa the alloy reaches the slowly-evolving
state: both the number density and the mean radius
of precipitates tend to steady state values (Fig. 4).
The mean radius of precipitates is defined as

Rmean ¼
1

xNp

XM

i¼i�
f ðxi; tÞRðxiÞDzi

� 1

Np

Z 1

R�
F ðR; tÞRdR: ð34Þ

Fig. 4(b) shows also the dose dependence of the
standard deviation r

r2 ¼ 1

xN p

XM

i¼i�
f ðxi; tÞ½RðxiÞ � Rmean	2Dzi

� 1

Np

Z 1

R�
F ðR; tÞðR� RmeanÞ2 dR; ð35Þ

which is related to the width of the precipitate distri-
bution. It is seen that the distribution is getting nar-
row without any sign of saturation at 100 dpa.

Volume fractions of precipitates, heterophase
fluctuations and solute monomers after 10 dpa prac-
tically do not change (Fig. 5). For the material
parameters used here, after the ending of the nucle-
ation stage the volume fraction of heterophase fluc-
tuations is small, it amounts to 0.04 at.%. In the
final state the solid solution remains supersaturated,
i.e. the concentration of solute monomers CA ¼
1:4Ce

A ¼ 0:7 at:%.
We have found that with decreasing the cluster

interphase energy the volume fraction of hetero-
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Fig. 5. Volume fractions of precipitates, heterophase fluctuations
(small clusters, n < 75) and solute monomers versus irradiation
dose.
phase fluctuations increases, whereas the rate of
solid solution decomposition decreases. The reason
is that in our model material at T = 600 K the main
driving force for solute redistribution between
coherent clusters is the thermal emission of solute
atoms, which is controlled by the interphase energy
(see Eq. (3)). At smaller values of interphase energy
the small clusters are more stable thermally and
their volume fraction is higher.

The total sink strength increases with dose
because of growth of semicoherent precipitates
which are sinks for PD (Fig. 6).

4.2. Aged alloy

In this section we simulate the cascade-induced
shrinkage of thermally stable incoherent precipitates
existing in the alloy prior to irradiation. In the ini-
tial state the alloy is supersaturated, CA ¼ 1:25Ce

A,
and contains incoherent precipitates with the
mean radius R0 = 11 nm and the number density
N0 = 3 · 1021 m�3. The total solute content is
Q = 2.5 at.%. The initial size distribution was taken
in the form of the Lifshitz–Slyozov distribution
[55,56], which is observed normally in thermally
aged alloys

F 0ðRÞ ¼
N 0

R0

g
R
R0

� �
;

gðuÞ ¼ 4

9
u2 3

3þ u

� �7=3
1:5

1:5� u

� �11=3

� exp � u
1:5� u

� �
: ð36Þ

Fig. 7 shows the simulated distribution function
along with the mesh used in calculations. Because of
cascade-induced dissolution of incoherent precipitates
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the size distribution shifts to smaller sizes. At the
same time the monomer concentration increases
well above the equilibrium concentration of mono-
mers (Fig. 8) giving rise to nucleation and growth
of coherent precipitates. As a result the bimodal dis-
tribution function forms. Ultimately, the precipitate
population evolves to a very narrow distribution of
semicoherent precipitates (Fig. 7). In the final state
the volume fraction of mobile solute monomers is
higher than the precipitate volume fraction.

Dose dependences of the number density and the
mean radius of precipitates are shown in Fig. 9. At
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line) and the total sink strength (dashed line). (b) The mean radius of pr
standard deviation increases when new clusters nucleate.
about 7 dpa the density of precipitates increases
rapidly because of nucleation of small coherent pre-
cipitates. It is interesting that the second, more
smooth, wave of renucleation is observed at about
15 dpa. The reason is that the homogeneous nucle-
ation is an avalanche-like process which starts when
a sufficiently high solute supersaturation is created
in the material due to cascade dissolution of unsta-
ble precipitates. The sink strength and the standard
deviation exhibit non-monotonic dose dependence
because of dissolution of large precipitates and
renucleation of small precipitates (Fig. 9).

Here, the Lifshitz–Slyozov initial distribution of
precipitates was taken for the simulation. As we
have checked, for similar initial mean radii and
number densities the final parameters of precipitate
distribution are insensitive to changes of the shape
of the initial precipitate distribution.
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5. Discussion

Our main goals were (i) to show the important
consequences of coherency loss and (ii) to demon-
strate the numerical method to solve kinetic equa-
tions of evolution of the cluster population from
the early nucleation stage to the later asymptotic
or quasi-stationary stage.

We describe the coherency loss in a phenomeno-
logical way, using two parameters: the size of trans-
formation into the incoherent state and the width of
transformation region in the size space. More
detailed description is not possible at present. Nev-
ertheless our approach turned out to be useful for
prediction of possible paths of non-equilibrium evo-
lution of complicated systems such as alloys under
irradiation. Numerical results presented above show
that both in the solution-annealed alloy and in the
aged one the narrow slowly-evolving distributions
of semicoherent precipitates form under irradiation.
However, quasi-stationary states in these two alloys
differ, i.e. precipitate mean radii and number densi-
ties differ. At first glance, the final asymptotic state
should not depend on initial state of the alloy. To
explain this dependence let us consider Fig. 10. It
is seen that all precipitates have accumulated in
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Fig. 10. Size dependence of precipitate growth rate (thick solid
line) and precipitate distribution functions (thin solid lines)
formed in the solution-annealed alloy (a) and in the aged alloy
(b). Irradiation dose of the solution-annealed alloy is 100 dpa.
Irradiation dose of the aged alloy is 30 dpa. Distribution
functions are normalized to arbitrary values.
the point of stable size where the growth rate is zero.
In the case of solid solution critical and stable radii
are close to each other; in the case of aged alloy
these two radii differ considerably.

The critical and stable radii, Rcr and Rst,
approach each other if the concentration of solute
monomers decreases due to precipitate growth
and/or nucleation of small clusters. In the case of
aged alloy, initially, cascades dissolve large precipi-
tates; this results in increase of the solute supersatu-
ration. At a sufficiently high supersaturation at
about 7 dpa the nucleation process is triggered;
and after 2 dpa the nucleation rate drops down
drastically (Fig. 9(a)), despite the fact that the
solution remains supersaturated (Fig. 8). At the
same time, the newly-nucleated, growing clusters
(Rcr < R < Rst) absorb only a small fraction of
solute monomers. This means that the supersatura-
tion does not decrease substantially during evolu-
tion, i.e. Rcr and Rst remain separated even after
the second wave of nucleation observed after
15 dpa (Fig. 9(a)). Thus, because of a strong depen-
dence of the nucleation rate on solute supersatura-
tion, the asymptotic behavior of the irradiated
alloy depends on alloy initial state – whether simu-
lation started from the solid solution or from the
aged alloy. In other words, depending on the degree
of competition between nucleation, precipitate
growth and cascade dissolution, the system becomes
arrested in different kinds of quasi-stationary
asymptotic states. From a practical point of view,
by preparing a certain initial state of the alloy one
can select the proper quasi-stationary asymptotic
state and the time to reach this state.

To check the argumentation presented above we
have simulated the alloy evolution for a higher
nucleation rate, i.e. for a smaller value of the inter-
phase energy, c = 5 · 10�2 J/m2. Fig. 11 shows that
in this case the asymptotic state of the alloy does not
depend on initial state of the alloy.

Since in the stable point, where all precipitates
accumulate, the drift rate A(x) is zero (see Eq.
(22)), at a later stage of evolution the diffusion in
the size space determines the width of the size distri-
bution and the time to reach quasi-steady state. We
used above the simplified model of cascade dissolu-
tion. It was assumed that due to cascade impacts the
solute atoms are ejected from the precipitate one by
one, similar to thermal evaporation. In reality, a
cascade can remove at a time several solute atoms
from the precipitate, or even can disperse the small
precipitate/cluster completely [57], i.e. the number
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of atoms removed by cascades from the precipitate
undergoes large fluctuations. Let us discuss sche-
matically the influence of this effect on evolution
of the precipitate size distribution. In order to take
into account the stochastic nature of cascade-
induced dissolution, Eqs. (10) and (11) for large
precipitates should be rewritten in the form

of ðn; tÞ
ot

¼ J 0
n�1;n � J 0

n;nþ1 � f ðn; tÞ
Xkm

k¼1

W Cðk; nÞ

þ
Xkm

k¼1

W Cðk; nþ kÞf ðnþ k; tÞ; ð37Þ

where J 0
n�1;n is the cluster flux in the size space

without cascade effects, i.e. J 0
n�1;n is given by Eqs.

(11)–(13) in which Dmix is set to zero. Other terms
correspond to cascade dissolution: WC(k,n) is pro-
portional to the probability for a cascade to remove
k solute atoms from the precipitate containing n sol-
ute atoms and km is the maximum number of solute
atoms which can be removed from the precipitate by
a cascade. For large precipitates (n� km), Eq. (37)
is transformed by the Taylor series expansion into
the Fokker–Planck equation similar to Eq. (22),
but with different drift rate and diffusion coefficient

AðxÞ ¼ A0ðxÞ �
Xkm

k¼1

kW Cðk; nÞ; ð38Þ

BðxÞ ¼ B0ðxÞ þ
Xkm

k¼1

k2W Cðk; nÞ: ð39Þ

In order to describe correctly dissolution of large
precipitates the drift rate, Eq. (38), should be
approximately the same as that given by Eq. (23),
i.e.

Xkm

k¼1

kW Cðk; nÞ ffi
4pRðnÞ

x
Dmix: ð40Þ

As regards the cascade contribution to the diffusion
coefficient in the size space, it can be estimated as
follows:
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Xkm

k¼1

k2W Cðk; nÞP
Xkm

k¼1

W Cðk; nÞ
 !�1 Xkm

k¼1

kW Cðk; nÞ
 !2

¼ �k
4pRðnÞ

x
Dmix;

ð41Þ

where

�k ¼
Xkm

k¼1

W Cðk; nÞ
 !�1Xkm

k¼1

kW Cðk; nÞ ð42Þ

is the mean number of solute atoms removed by one
cascade from the precipitate. According to Eq. (41),
the cascade contribution to the diffusion coefficient
B(x) is at least �k times larger than in the model sim-
ulated in this paper. This means that the width of
the precipitate distribution in the final state should
be larger. Indeed, in the quasi-stationary state all
precipitates accumulate in the vicinity of the stable
size xst, where the drift rate can be approximated
by a linear function of size

AðxÞ ¼ �aðx� xstÞ; a ¼ dAðxstÞ
dxst










: ð43Þ

The steady state solution to the Fokker–Planck
equation in the vicinity of the stable point is the
Gaussian distribution

f ðxÞ ¼ N px
1

r
ffiffiffiffiffiffi
2p
p exp �ðx� xstÞ2

2r2

 !
; ð44Þ

where r is the standard deviation of the distribution
(which is about the half width at half maximum)

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
BðxstÞ

2a

r
: ð45Þ

Since in the stable point CR
A � Ce

A, we obtain

BðxstÞ ¼
4pRst

x
Dmix

2þ ð�k þ 1ÞD
D

; ð46Þ

where D ¼ ðCA � Ce
AÞ=Ce

A is the supersaturation.
According to Eq. (46), the width of the precipitate
size distribution increases, when we take into ac-
count large fluctuations in dissolution events due
to cascades. The corresponding factor is given by

r�k

r1

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ð�k þ 1ÞD

2ð1þ DÞ

s
<

ffiffiffiffiffiffiffiffiffiffiffi
�k þ 1

2

r
: ð47Þ

Assuming that �k ¼ 100, for the aged alloy simulated
in Section 4.2 we find that the distribution remains
rather narrow, r100 = 5.6r1 � 1.3 nm.
The numerical method proposed in this paper
proved to be very efficient for simulation of nucle-
ation and evolution of second-phase particles. We
also tested successfully our method on a problem
of thermal decomposition of supersaturated solid
solutions. It is known that during the later stage of
decomposition (the Ostwald ripening), the precipi-
tate size distribution exhibits scaling behavior as pre-
dicted by the Lifshits–Slezov theory of coarsening
[55,56]. To assess accuracy and convergence of our
numerical method the asymptotic solutions by Lifsh-
its and Slezov have been compared with numerical
results. We have found that during the later stage
the precipitate size distribution, when scaled by the
mean radius, tends towards a steady state shape,
which closely matches the shape expected from the
Lifshits–Slezov coarsening theory. The advantage
of our approach is that using the same kinetic model
and numerical method one can describe both the
nucleation stage and the crossover to the final
Ostwald ripening regime, as well as influence of
initial conditions, heterophase fluctuations and dif-
fusion in the size space on coarsening behavior of
the precipitate population. We are going to address
these questions in a separate publication.

6. Conclusions

1. The model has been formulated to describe evo-
lution of the mixed population of coherent, semi-
coherent and incoherent precipitates.

2. The new numerical implementation of the hybrid
approach has been proposed for simulation of
nucleation and growth kinetics of cluster popula-
tions. In our method the hybrid approach is com-
bined with the flexible meshing scheme that has
the following advantages:
• the spacing between mesh points can be

adjusted to peculiarities of the solution
behavior;

• the crossover from discrete to continuous for-
mulations can be chosen at any cluster size,
depending on problem;

• the discretized Fokker–Planck equation can
be used for cluster sizes n P 3, i.e. matching
of discrete and continuous solution is achieved
automatically.
3. Coherency loss dramatically affects the develop-
ment of precipitate population under cascade-
producing irradiation. In a supersaturated alloy
the transformation of precipitates to a less coher-
ent structure decreases the rate of recovery due to
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diffusion, i.e. the cascade-induced dissolution of
semicoherent and incoherent precipitates is more
efficient. At temperatures which can be deter-
mined from the radiation-modified diagrams,
the competition between (i) nucleation and
growth of coherent precipitates, (ii) coherency
loss and (iii) cascade-induced dissolution of inco-
herent precipitates leads to formation of the
narrow slowly-evolving size distribution of semi-
coherent precipitates.

4. The quasi-steady state of the precipitate popula-
tion, which forms in the alloy after prolonged
irradiation, may depend on initial state of the
alloy.

5. The model of this paper can explain experimental
observations such as (i) the lack of coarsening
and decrease in size of Cu precipitates in Fe–Cu
alloys irradiated with neutrons and ions at low
temperatures and (ii) the absence of large inco-
herent precipitates in Zr–Nb alloys under reactor
irradiation.
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